当前位置:希尼尔首页 > 译海拾贝
> 译文欣赏
> 东北电力大学教师学期授课计划Teacher’s
Semester Teaching Plan of Northeast Dianli University
东北电力大学教师学期授课计划
Teacher’s Semester Teaching Plan of Northeast Dianli University
原创文章:青岛希尼尔翻译公司 http://www.sinosenior.com.cn
2014-11-17
(非涉密内容)
Course Name |
|
|||
Teacher |
|
Teaching Class |
|
|
Textbook |
|
Author |
|
|
Press |
China Renmin University
Press |
|||
Reference Book |
|
|||
Teaching Method |
□blackboard writing
□multimedia ■combination of
these two methods |
|||
Total Credit Hours |
39 Credit Hours |
Teaching Hours |
39 Credit Hours |
|
Experiment Credit Hours |
Credit Hour |
Computer Credit Hour |
Credit Hour |
|
Outdoor Sketch |
Credit Hour |
Investigation and Research |
Credit Hour |
|
Homework Times |
|
Check Times |
|
|
Tutorial Answering |
|
|||
Check Type |
■exam
□check |
|||
Exam Form |
■closed test
□open test
□half-open test □oral test
□others |
|||
Notes: 1. The semester teaching plan
is filled by the teacher and takes into effect after the college or
department principal affirms it.
2. The semester teaching plan is in
triplicate and submitted to the college or department for archives
respectively. The teacher keeps one copy. The original is collected by the
teaching secretary in unity two weeks before the semester begins. The
collection sheet is submitted to the Division of Teaching Affairs with seal.
3. To stabilize the teaching order,
this plan cannot be changed in principle after it becomes effective. If it
needs to be changed, please go through relevant adjusting procedures
according to the procedure.
Signature of the Teacher:
**d**m**y
Signature of College (Department)
Principal: **d**m**y
课程名称 |
|
|||
任课教师 |
|
授课班级 |
|
|
使用教材 |
|
作
者 |
|
|
出 版 社 |
人民大学出版社 |
|||
参考教材 |
高等数学—同济大学数学系主编 |
|||
教学手段 |
□板书
□多媒体 ■两者结合 |
|||
总学时数 |
39学时 |
讲授学时 |
39学时 |
|
实验学时 |
学时 |
上机学时 |
学时 |
|
室外写生 |
学时 |
采风调研 |
学时 |
|
作业次数 |
|
批改次数 |
|
|
辅导答疑 |
|
|||
考核类型 |
■考试
□考查 |
|||
考试形式 |
■闭卷
□开卷
□半开卷 □口试
□其他 |
|||
说明:1.学期授课计划由任课教师本人填写,并由院(系)负责人审核无误后,签字生效。
2.学期授课计划一式三份,分别交院(系)存档备查,任课教师留存,原件由教学干事于开学初前2周内统一汇总,并在汇总表上盖章后上交教务处。
3.为稳定教学秩序,本计划生效后原则上不得变动,如确需变动,请按程序办理相关调整手续。
院(系)负责人签字:
年
月 日
Class Hour
Arrangement
Teaching Week |
Class Times |
Teaching
Contents(including chapter
contents) |
Teaching Method |
|
7 |
1 |
Chapter 1 |
1.1 Function
1.2 Elementary Function 1.3 Common Economic Function |
Combination of blackboard
writing and multimedia |
8 |
2 |
|
1.4 Sequence Limit
1.5 Function Limit |
|
3 |
|
1.6 Infinity and
Infinitesimal |
||
|
1.7 Limit Algorithm |
|||
9 |
4 |
|
1.8 Limit Principle and Two
Important Limits |
|
|
1.9 Infinitesimal Comparison |
|||
10 |
5 |
|
1.10 Functional Continuity
and Discontinuity |
|
|
1.11 Operation and Property
of Continuous Function |
|||
6 |
Exercise Class |
Summarize briefly and
explain typical exercises |
||
11 |
7 |
Chapter 2 |
2.1 Derivative Definition
2.2Derivative Derivation Principle |
|
12 |
8 |
|
2.3 Higher Order Derivative |
|
|
2.4 Implicit Functional
Derivative |
|||
9 |
|
2.5 Functional Differential |
||
13 |
10 |
Exercise Class |
Summarize briefly and
explain typical exercises |
|
14 |
11 |
Chapter 3 |
3.1 Mean Value Theorem |
|
|
|
|||
12 |
|
3.4 Functional Monotonicity
and Curve Convexity & Concavity |
||
|
3.5 Functional Extremum and
Maximum & Minimum |
|||
15 |
13 |
|
3.7 Derivative Application
to Economics |
|
Exercise Class |
Summarize briefly and
explain typical exercises |
|||
16 |
14 |
Chapter 4 |
4.1 Definition and Property
of Indefinite Integral |
|
|
4.2 Integral by Substitution |
|||
15 |
|
4.3 Integral by Parts |
||
17 |
16 |
Chapter 5 |
5.1 Definition of Definite
Integral 5.2 Property of Definite Integral |
|
18 |
17 |
|
5.3 Basic Formulas of
Calculus |
|
|
5.4 Integration by
substitution and parts of Definite Integral |
|||
18 |
Exercise Class |
Summarize briefly and
explain typical exercises |
教学周 |
课次 |
教学内容(包括章、节内容) |
教学手段 |
|
7 |
1 |
第一章 |
1.1 函数
1.2 初等函数 1.3 常用经济函数 |
板书 多媒体 结合 |
8 |
2 |
|
1.4 数列的极限
1.5 函数的极限 |
|
3 |
|
1.6 无穷大量与无穷小量 |
||
|
1.7 极限的运算法则 |
|||
9 |
4 |
|
1.8
极限存在的准则与两个重要极限 |
|
|
1.9 无穷小的比较 |
|||
10 |
5 |
|
1.10 函数的连续与间断 |
|
|
1.11 连续函数的运算与性质 |
|||
6 |
习题课 |
内容小结
讲解典型习题 |
||
11 |
7 |
第二章 |
2.1 导数概念
2.2 导数的求导法则 |
|
12 |
8 |
|
2.3 高阶导数 |
|
|
2.4 隐函数的导数 |
|||
9 |
|
2.5 函数的微分 |
||
13 |
10 |
习题课 |
内容小结
讲解典型习题 |
|
14 |
11 |
第三章 |
3.1 中值定理 |
|
|
3.2 洛必达法则 |
|||
12 |
|
3.4函数的单调性与曲线的凸凹性 |
||
|
3.5 函数的极值与最值 |
|||
15 |
13 |
|
3.7 导数在经济学中的应用 |
|
习题课 |
内容小结
讲解典型习题 |
|||
16 |
14 |
第四章 |
4.1不定积分的概念与性质 |
|
|
4.2 换元积分 |
|||
15 |
|
4.3 分部积分 |
||
17 |
16 |
第五章 |
5.1 定积分的概念5.2
定积分的性质 |
|
18 |
17 |
|
5.3 微积分基本公式 |
|
|
5.4
定积分的换元积分法与分部积分法 |
|||
18 |
习题课 |
内容小结
讲解典型习题 |
文章内容由青岛希尼尔翻译公司翻译
中英对照 中英双语翻译 专业翻译